Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Generation of composite Persea americana (Mill.) (avocado) plants: A proof-of-concept-study.

Identifieur interne : 000993 ( Main/Exploration ); précédent : 000992; suivant : 000994

Generation of composite Persea americana (Mill.) (avocado) plants: A proof-of-concept-study.

Auteurs : S Ashok Prabhu [Afrique du Sud] ; Buyani Ndlovu [Afrique du Sud] ; Juanita Engelbrecht [Afrique du Sud] ; Noëlani Van Den Berg [Afrique du Sud]

Source :

RBID : pubmed:29053757

Descripteurs français

English descriptors

Abstract

Avocado (Persea americana (Mill.)), an important commercial fruit, is severely affected by Phytophthora Root Rot in areas where the pathogen is prevalent. However, advances in molecular research are hindered by the lack of a high-throughput transient transformation system in this non-model plant. In this study, a proof-of-concept is demonstrated by the successful application of Agrobacterium rhizogenes-mediated plant transformation to produce composite avocado plants. Two ex vitro strategies were assessed on two avocado genotypes (Itzamna and A0.74): In the first approach, 8-week-old etiolated seedlings were scarred with a sterile hacksaw blade at the base of the shoot, and in the second, inch-long incisions were made at the base of the shoot (20-week-old non-etiolated plants) with a sterile blade to remove the cortical tissue. The scarred/wounded shoot surfaces were treated with A. rhizogenes strains (K599 or ARqua1) transformed with or without binary plant transformation vectors pRedRootII (DsRed1 marker), pBYR2e1-GFP (GFP- green fluorescence protein marker) or pBINUbiGUSint (GUS- beta-glucuronidase marker) with and without rooting hormone (Dip 'N' Grow) application. The treated shoot regions were air-layered with sterile moist cocopeat to induce root formation. Results showed that hormone application significantly increased root induction, while Agrobacterium-only treatments resulted in very few roots. Combination treatments of hormone+Agrobacterium (-/+ plasmids) showed no significant difference. Only the ARqua1(+plasmid):A0.74 combination resulted in root transformants, with hormone+ARqua1(+pBINUbiGUSint) being the most effective treatment with ~17 and 25% composite plants resulting from strategy-1 and strategy-2, respectively. GUS- and GFP-expressing roots accounted for less than 4 and ~11%, respectively, of the total roots/treatment/avocado genotype. The average number of transgenic roots on the composite plants was less than one per plant in all treatments. PCR and Southern analysis further confirmed the transgenic nature of the roots expressing the screenable marker genes. Transgenic roots showed hyper-branching compared to the wild-type roots but this had no impact on Phytophthora cinnamomi infection. There was no difference in pathogen load 7-days-post inoculation between transformed and control roots. Strategy-2 involving A0.74:ARqua1 combination was the best ex vitro approach in producing composite avocado plants. The approach followed in this proof-of-concept study needs further optimisation involving multiple avocado genotypes and A. rhizogenes strains to achieve enhanced root transformation efficiencies, which would then serve as an effective high-throughput tool in the functional screening of host and pathogen genes to improve our understanding of the avocado-P. cinnamomi interaction.

DOI: 10.1371/journal.pone.0185896
PubMed: 29053757
PubMed Central: PMC5650140


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Generation of composite Persea americana (Mill.) (avocado) plants: A proof-of-concept-study.</title>
<author>
<name sortKey="Prabhu, S Ashok" sort="Prabhu, S Ashok" uniqKey="Prabhu S" first="S Ashok" last="Prabhu">S Ashok Prabhu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.</nlm:affiliation>
<country xml:lang="fr">Afrique du Sud</country>
<wicri:regionArea>Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria</wicri:regionArea>
<wicri:noRegion>Pretoria</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria, South Africa.</nlm:affiliation>
<country xml:lang="fr">Afrique du Sud</country>
<wicri:regionArea>Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria</wicri:regionArea>
<wicri:noRegion>Pretoria</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ndlovu, Buyani" sort="Ndlovu, Buyani" uniqKey="Ndlovu B" first="Buyani" last="Ndlovu">Buyani Ndlovu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.</nlm:affiliation>
<country xml:lang="fr">Afrique du Sud</country>
<wicri:regionArea>Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria</wicri:regionArea>
<wicri:noRegion>Pretoria</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria, South Africa.</nlm:affiliation>
<country xml:lang="fr">Afrique du Sud</country>
<wicri:regionArea>Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria</wicri:regionArea>
<wicri:noRegion>Pretoria</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Engelbrecht, Juanita" sort="Engelbrecht, Juanita" uniqKey="Engelbrecht J" first="Juanita" last="Engelbrecht">Juanita Engelbrecht</name>
<affiliation wicri:level="1">
<nlm:affiliation>Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.</nlm:affiliation>
<country xml:lang="fr">Afrique du Sud</country>
<wicri:regionArea>Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria</wicri:regionArea>
<wicri:noRegion>Pretoria</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Van Den Berg, Noelani" sort="Van Den Berg, Noelani" uniqKey="Van Den Berg N" first="Noëlani" last="Van Den Berg">Noëlani Van Den Berg</name>
<affiliation wicri:level="1">
<nlm:affiliation>Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.</nlm:affiliation>
<country xml:lang="fr">Afrique du Sud</country>
<wicri:regionArea>Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria</wicri:regionArea>
<wicri:noRegion>Pretoria</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria, South Africa.</nlm:affiliation>
<country xml:lang="fr">Afrique du Sud</country>
<wicri:regionArea>Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria</wicri:regionArea>
<wicri:noRegion>Pretoria</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:29053757</idno>
<idno type="pmid">29053757</idno>
<idno type="doi">10.1371/journal.pone.0185896</idno>
<idno type="pmc">PMC5650140</idno>
<idno type="wicri:Area/Main/Corpus">000899</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000899</idno>
<idno type="wicri:Area/Main/Curation">000899</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000899</idno>
<idno type="wicri:Area/Main/Exploration">000899</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Generation of composite Persea americana (Mill.) (avocado) plants: A proof-of-concept-study.</title>
<author>
<name sortKey="Prabhu, S Ashok" sort="Prabhu, S Ashok" uniqKey="Prabhu S" first="S Ashok" last="Prabhu">S Ashok Prabhu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.</nlm:affiliation>
<country xml:lang="fr">Afrique du Sud</country>
<wicri:regionArea>Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria</wicri:regionArea>
<wicri:noRegion>Pretoria</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria, South Africa.</nlm:affiliation>
<country xml:lang="fr">Afrique du Sud</country>
<wicri:regionArea>Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria</wicri:regionArea>
<wicri:noRegion>Pretoria</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ndlovu, Buyani" sort="Ndlovu, Buyani" uniqKey="Ndlovu B" first="Buyani" last="Ndlovu">Buyani Ndlovu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.</nlm:affiliation>
<country xml:lang="fr">Afrique du Sud</country>
<wicri:regionArea>Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria</wicri:regionArea>
<wicri:noRegion>Pretoria</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria, South Africa.</nlm:affiliation>
<country xml:lang="fr">Afrique du Sud</country>
<wicri:regionArea>Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria</wicri:regionArea>
<wicri:noRegion>Pretoria</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Engelbrecht, Juanita" sort="Engelbrecht, Juanita" uniqKey="Engelbrecht J" first="Juanita" last="Engelbrecht">Juanita Engelbrecht</name>
<affiliation wicri:level="1">
<nlm:affiliation>Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.</nlm:affiliation>
<country xml:lang="fr">Afrique du Sud</country>
<wicri:regionArea>Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria</wicri:regionArea>
<wicri:noRegion>Pretoria</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Van Den Berg, Noelani" sort="Van Den Berg, Noelani" uniqKey="Van Den Berg N" first="Noëlani" last="Van Den Berg">Noëlani Van Den Berg</name>
<affiliation wicri:level="1">
<nlm:affiliation>Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.</nlm:affiliation>
<country xml:lang="fr">Afrique du Sud</country>
<wicri:regionArea>Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria</wicri:regionArea>
<wicri:noRegion>Pretoria</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria, South Africa.</nlm:affiliation>
<country xml:lang="fr">Afrique du Sud</country>
<wicri:regionArea>Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria</wicri:regionArea>
<wicri:noRegion>Pretoria</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Blotting, Southern (MeSH)</term>
<term>Genes, Plant (MeSH)</term>
<term>Persea (genetics)</term>
<term>Persea (growth & development)</term>
<term>Plant Roots (MeSH)</term>
<term>Plants, Genetically Modified (MeSH)</term>
<term>Polymerase Chain Reaction (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Gènes de plante (MeSH)</term>
<term>Persea (croissance et développement)</term>
<term>Persea (génétique)</term>
<term>Racines de plante (MeSH)</term>
<term>Réaction de polymérisation en chaîne (MeSH)</term>
<term>Technique de Southern (MeSH)</term>
<term>Végétaux génétiquement modifiés (MeSH)</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Persea</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Persea</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Persea</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Persea</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Blotting, Southern</term>
<term>Genes, Plant</term>
<term>Plant Roots</term>
<term>Plants, Genetically Modified</term>
<term>Polymerase Chain Reaction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Gènes de plante</term>
<term>Racines de plante</term>
<term>Réaction de polymérisation en chaîne</term>
<term>Technique de Southern</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Avocado (Persea americana (Mill.)), an important commercial fruit, is severely affected by Phytophthora Root Rot in areas where the pathogen is prevalent. However, advances in molecular research are hindered by the lack of a high-throughput transient transformation system in this non-model plant. In this study, a proof-of-concept is demonstrated by the successful application of Agrobacterium rhizogenes-mediated plant transformation to produce composite avocado plants. Two ex vitro strategies were assessed on two avocado genotypes (Itzamna and A0.74): In the first approach, 8-week-old etiolated seedlings were scarred with a sterile hacksaw blade at the base of the shoot, and in the second, inch-long incisions were made at the base of the shoot (20-week-old non-etiolated plants) with a sterile blade to remove the cortical tissue. The scarred/wounded shoot surfaces were treated with A. rhizogenes strains (K599 or ARqua1) transformed with or without binary plant transformation vectors pRedRootII (DsRed1 marker), pBYR2e1-GFP (GFP- green fluorescence protein marker) or pBINUbiGUSint (GUS- beta-glucuronidase marker) with and without rooting hormone (Dip 'N' Grow) application. The treated shoot regions were air-layered with sterile moist cocopeat to induce root formation. Results showed that hormone application significantly increased root induction, while Agrobacterium-only treatments resulted in very few roots. Combination treatments of hormone+Agrobacterium (-/+ plasmids) showed no significant difference. Only the ARqua1(+plasmid):A0.74 combination resulted in root transformants, with hormone+ARqua1(+pBINUbiGUSint) being the most effective treatment with ~17 and 25% composite plants resulting from strategy-1 and strategy-2, respectively. GUS- and GFP-expressing roots accounted for less than 4 and ~11%, respectively, of the total roots/treatment/avocado genotype. The average number of transgenic roots on the composite plants was less than one per plant in all treatments. PCR and Southern analysis further confirmed the transgenic nature of the roots expressing the screenable marker genes. Transgenic roots showed hyper-branching compared to the wild-type roots but this had no impact on Phytophthora cinnamomi infection. There was no difference in pathogen load 7-days-post inoculation between transformed and control roots. Strategy-2 involving A0.74:ARqua1 combination was the best ex vitro approach in producing composite avocado plants. The approach followed in this proof-of-concept study needs further optimisation involving multiple avocado genotypes and A. rhizogenes strains to achieve enhanced root transformation efficiencies, which would then serve as an effective high-throughput tool in the functional screening of host and pathogen genes to improve our understanding of the avocado-P. cinnamomi interaction.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29053757</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>11</Month>
<Day>21</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>12</Volume>
<Issue>10</Issue>
<PubDate>
<Year>2017</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Generation of composite Persea americana (Mill.) (avocado) plants: A proof-of-concept-study.</ArticleTitle>
<Pagination>
<MedlinePgn>e0185896</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0185896</ELocationID>
<Abstract>
<AbstractText>Avocado (Persea americana (Mill.)), an important commercial fruit, is severely affected by Phytophthora Root Rot in areas where the pathogen is prevalent. However, advances in molecular research are hindered by the lack of a high-throughput transient transformation system in this non-model plant. In this study, a proof-of-concept is demonstrated by the successful application of Agrobacterium rhizogenes-mediated plant transformation to produce composite avocado plants. Two ex vitro strategies were assessed on two avocado genotypes (Itzamna and A0.74): In the first approach, 8-week-old etiolated seedlings were scarred with a sterile hacksaw blade at the base of the shoot, and in the second, inch-long incisions were made at the base of the shoot (20-week-old non-etiolated plants) with a sterile blade to remove the cortical tissue. The scarred/wounded shoot surfaces were treated with A. rhizogenes strains (K599 or ARqua1) transformed with or without binary plant transformation vectors pRedRootII (DsRed1 marker), pBYR2e1-GFP (GFP- green fluorescence protein marker) or pBINUbiGUSint (GUS- beta-glucuronidase marker) with and without rooting hormone (Dip 'N' Grow) application. The treated shoot regions were air-layered with sterile moist cocopeat to induce root formation. Results showed that hormone application significantly increased root induction, while Agrobacterium-only treatments resulted in very few roots. Combination treatments of hormone+Agrobacterium (-/+ plasmids) showed no significant difference. Only the ARqua1(+plasmid):A0.74 combination resulted in root transformants, with hormone+ARqua1(+pBINUbiGUSint) being the most effective treatment with ~17 and 25% composite plants resulting from strategy-1 and strategy-2, respectively. GUS- and GFP-expressing roots accounted for less than 4 and ~11%, respectively, of the total roots/treatment/avocado genotype. The average number of transgenic roots on the composite plants was less than one per plant in all treatments. PCR and Southern analysis further confirmed the transgenic nature of the roots expressing the screenable marker genes. Transgenic roots showed hyper-branching compared to the wild-type roots but this had no impact on Phytophthora cinnamomi infection. There was no difference in pathogen load 7-days-post inoculation between transformed and control roots. Strategy-2 involving A0.74:ARqua1 combination was the best ex vitro approach in producing composite avocado plants. The approach followed in this proof-of-concept study needs further optimisation involving multiple avocado genotypes and A. rhizogenes strains to achieve enhanced root transformation efficiencies, which would then serve as an effective high-throughput tool in the functional screening of host and pathogen genes to improve our understanding of the avocado-P. cinnamomi interaction.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Prabhu</LastName>
<ForeName>S Ashok</ForeName>
<Initials>SA</Initials>
<AffiliationInfo>
<Affiliation>Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria, South Africa.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ndlovu</LastName>
<ForeName>Buyani</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria, South Africa.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Engelbrecht</LastName>
<ForeName>Juanita</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>van den Berg</LastName>
<ForeName>Noëlani</ForeName>
<Initials>N</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0001-9574-7331</Identifier>
<AffiliationInfo>
<Affiliation>Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria, South Africa.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>10</Month>
<Day>20</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D015139" MajorTopicYN="N">Blotting, Southern</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D027421" MajorTopicYN="N">Persea</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016133" MajorTopicYN="N">Polymerase Chain Reaction</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>08</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>09</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>10</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>10</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>11</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29053757</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0185896</ArticleId>
<ArticleId IdType="pii">PONE-D-17-28723</ArticleId>
<ArticleId IdType="pmc">PMC5650140</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Exp Bot. 2009;60(13):3797-807</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19574251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 May;150(1):521-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19279195</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2012 Jul;110(2):479-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22553131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 1989 May;8(1):12-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24232586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 1995 Jul-Aug;8(4):532-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8589409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(10):e25802</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21991355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2004 May;55(399):983-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15073217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2006 Sep;25(9):959-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16596429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2012 Jan;144(1):59-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21916897</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2008 May;21(5):518-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18393611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Methods. 2012 Jun 28;8(1):22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22741546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2001 Aug;10(8):2079-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11555251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2007;2(4):948-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17446894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 Aug;43(3):449-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16045479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2017 Feb 23;12 (2):e0172320</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28231330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>DNA Cell Biol. 2002 Dec;21(12):963-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12573053</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Res. 2011 Jan 20;166(1):14-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20116226</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteomics. 2014 Jun 13;105:5-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24440519</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2014 Dec;33(12):1977-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25182479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cold Spring Harb Perspect Biol. 2010 Jun;2(6):a001537</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20516130</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2013 Jun 18;14(6):R62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23777981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Oct;18(10):2680-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17028204</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Afrique du Sud</li>
</country>
</list>
<tree>
<country name="Afrique du Sud">
<noRegion>
<name sortKey="Prabhu, S Ashok" sort="Prabhu, S Ashok" uniqKey="Prabhu S" first="S Ashok" last="Prabhu">S Ashok Prabhu</name>
</noRegion>
<name sortKey="Engelbrecht, Juanita" sort="Engelbrecht, Juanita" uniqKey="Engelbrecht J" first="Juanita" last="Engelbrecht">Juanita Engelbrecht</name>
<name sortKey="Ndlovu, Buyani" sort="Ndlovu, Buyani" uniqKey="Ndlovu B" first="Buyani" last="Ndlovu">Buyani Ndlovu</name>
<name sortKey="Ndlovu, Buyani" sort="Ndlovu, Buyani" uniqKey="Ndlovu B" first="Buyani" last="Ndlovu">Buyani Ndlovu</name>
<name sortKey="Prabhu, S Ashok" sort="Prabhu, S Ashok" uniqKey="Prabhu S" first="S Ashok" last="Prabhu">S Ashok Prabhu</name>
<name sortKey="Van Den Berg, Noelani" sort="Van Den Berg, Noelani" uniqKey="Van Den Berg N" first="Noëlani" last="Van Den Berg">Noëlani Van Den Berg</name>
<name sortKey="Van Den Berg, Noelani" sort="Van Den Berg, Noelani" uniqKey="Van Den Berg N" first="Noëlani" last="Van Den Berg">Noëlani Van Den Berg</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000993 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000993 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29053757
   |texte=   Generation of composite Persea americana (Mill.) (avocado) plants: A proof-of-concept-study.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29053757" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024